I. Domain & Range (p.149):
The set of values for “x” which are permitted is the Domain (D), while the set of corresponding values for “y” is the Range (R)...

II. Examples (pp.152-153): Exercises #28,30,32,38

HW: pp.152-153 / Exercises #27-33(odd),41,43
I. Function (p.155): for “our” purposes...
 A function is an equation (between “x” & “y”) such that every value of “x” has exactly one and only one corresponding value of “y.”

II. Examples (p.161): Exercises #32, 36-46(even)

III. Function Notation (p.158): \(y = f(x) \)
 “y” equals “f” of “x”
 The “\(f(x) \)” notation replaces “y” in the equation, and in doing so indicates that the equation is indeed a function...
IV. Examples (p.161): Exercises #48abcde,52

HW: p.161 / Exercises #29-45(odd),47abcde,51,55
Read pp.163-170 (section 2.2)
I. Domain of a function, \(f(x) \) — (p.163):
Restrict “\(x \)” values so that \(f(x) \) is a Real #...

1. **Avoid division by zero** —

 If \(f(x) = \frac{P(x)}{Q(x)} \), then \(D = \{x \mid Q(x) \neq 0\} \).

2. **Avoid even roots of negative #’s** —

 If \(f(x) = \sqrt{g(x)} \), then \(D = \{x \mid g(x) \geq 0\} \).

3. **Otherwise**, \(D = (-\infty, \infty) \)

II. Examples (p.171): Exercises #20,22,24
HW: p.171 / Exercises #17-25(odd)