Final Exam: Cumulative Review (Math 115 / Statistics)

1.1 statistics, descriptive v. inferential, quantitative v. qualitative, population v. sample
1.2 simple random sampling (use Table 1, Appendix II), identify random, stratified, systematic, cluster \& convenience samples, sampling v. non-sampling errors (see 1.3/p. 26 regarding "potential pitfalls")
1.3 census, observational v. experimental, placebo, control group, double-blind
2.1 raw v. group data, frequency, relative frequency, frequency distribution, class width, class limits, histogram, distribution shapes (p.49), outlier, cumulative frequency \& ogive
2.2 bar graphs (cluster \& Pareto); circle/pie graphs, time series
2.3 stem-and-leaf display
3.1 find the mode, median (MD), mean (\bar{x} or μ), and 5% trimmed mean for either raw data or grouped data; find a weighted average
3.2 find the standard deviation (s or σ) for either raw data or grouped data (see p.117); find the coefficient of variation (CV); use Chebyshev's Theorem (formula for " k " provided)
3.3 find the five-number summary values; box-and-whisker plots not covered
4.1 Sample space, $n(s)$, event/outcome notation and terminology, probability notation, find the probability values for events
4.2 find probability values for compound events, independence, mutually exclusive, conditional probability - see formula summary, p. 168
4.3 multiplication rule for counting, factorial, permutations $\left({ }_{n} \mathrm{P}_{\mathrm{r}}\right)$, and combinations $\left({ }_{\mathrm{n}} \mathrm{C}_{\mathrm{r}}\right)$
5.1 discrete vs continuous; probability distribution (table-graph depicting $\mathrm{P}(\boldsymbol{x})$ for each outcome, sum equals one); "expected value" is the mean, $\mu=\sum x \cdot \mathrm{P}(x)$
5.2 binomial distribution characteristics (p.212); probability formula (p.216): $\mathbf{P}(\mathbf{r})={ }_{\mathbf{n}} \mathbf{C}_{\mathbf{r}} \times \mathbf{p}^{\mathbf{r}} \times(\mathbf{1}-\mathbf{p})^{\mathbf{n}-\mathbf{r}}$ (provided on test)
5.3 binomial distribution with " n " trials has mean $(\mu=n p)$ and standard deviation ($\sigma=\sqrt{\mathrm{np}(1-\mathrm{p})}$); skewed or symmetric
6.1 normal curve/distribution characteristics (p.273); empirical rule (p. 274 / percent values provided on test); graph \& interpret a control chart (p .279 / graphics-box provided on test \sim signals I-III)
6.2 standard normal distribution ($\mu=0, \sigma=1$); \boldsymbol{z}-score; left-tail distribution table (provided on test) for $\mathrm{P}(\boldsymbol{z}<\mathrm{b})$ values
6.3 use distribution table to find $\mathrm{P}(\mathrm{a}<\boldsymbol{x}<\mathrm{b})$ for any normal distribution given $\mu \& \sigma$; determine \boldsymbol{z}-score(s) when $\mathrm{P}(\boldsymbol{z}<\mathrm{b})$ is known; determine raw score " \boldsymbol{x} " given μ, σ, and $\mathrm{P}(\boldsymbol{x}<\mathrm{b})$
6.4 population $v s$ sample; sample statistics, mean sampling distribution (i.e., for $\overline{\boldsymbol{x}}$)
6.5 Central Limit Theorem (p.321): $\mu_{\bar{x}}=\mu \& \sigma_{\bar{x}}=\sigma \div \sqrt{\mathrm{n}}$ standard deviation of \bar{x} is a.k.a. the "standard error"; find $\mathrm{P}(\bar{x}<\mathrm{b})$ using the standard normal distribution table
6.6 use the normal distribution as an approximation to the binomial distribution by applying a continuity correction(s)
7.1 Estimate μ when σ is known with a confidence interval where the margin of error, $\mathrm{E}=\boldsymbol{z}_{\mathrm{c}} \times \sigma \div \sqrt{\mathrm{n}}$
7.2 Estimate μ when σ is unknown with a confidence interval where the margin of error, $\mathrm{E}=t_{\mathrm{c}} \times \mathrm{s} \div \sqrt{\mathrm{n}} \quad($ d.f. $=\mathrm{n}-1)$
7.3 Estimate p with a confidence interval where the margin of error, $\mathrm{E}=\boldsymbol{z}_{\mathrm{c}} \times \sigma \div \sqrt{\mathrm{n}} \quad(\sigma=\sqrt{\mathrm{p}(1-\mathrm{p})}$, using $\overline{\mathrm{p}}$ when p is unknown $)$
7.4 Estimate a confidence interval for difference between means $\left(\mu_{1}-\mu_{1}\right)$ or population percentages $\left(p_{1}-p_{2}\right)$, interpret results
8.1 determine null hypothesis $\left(\mathrm{H}_{0}\right)$ \& alternate hypothesis $\left(\mathrm{H}_{1}\right)$
8.2 apply hypothesis testing for μ at significance level α by finding the P-value using $\boldsymbol{z}_{\mathrm{c}}$ or $\boldsymbol{t}_{\mathrm{c}}$ (as required)
8.3 apply hypothesis testing for p at significance level α by finding the P -value using $\boldsymbol{z}_{\mathrm{c}}$
9.1 graph a scatter plot, compute the correlation coefficient "r," $\mathrm{r} \approx \pm 1 \Leftrightarrow$ strong positive/negative linear correlation, whereas $\mathrm{r} \approx 0 \Leftrightarrow$ no/weak linear correlation between the variables
9.2 find, graph and/or use the least-square line, $\boldsymbol{y}=\mathrm{a}+\mathrm{b} \boldsymbol{x}$

Reference Formulas \& Information (provided on final examination):
$\sigma=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}} \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2} \div n}{n}}$
$S=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}} \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2} \div n}{n-1}}$
Permutations: ${ }_{n} P_{r}=\frac{n!}{(n-r)!} \quad$ Combinations: ${ }_{n} C_{r}=\frac{n!}{r!(n-r)!}$
Probability of " r " success in " n " trials of a binomial experiment: $\quad \mathrm{P}(\mathrm{r})={ }_{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \times \mathrm{p}^{\mathrm{r}} \times(1-\mathrm{p})^{\mathrm{n}-\mathrm{r}}$
Central Limit Theorem:
in a sampling distribution of means (i.e., for $\overline{\boldsymbol{x}}$) when $\mathrm{n} \geq 30$, or if " x " is normally distributed, $\mu_{\bar{x}}^{-}=\mu$ and $\sigma_{\bar{x}}=\sigma \div \sqrt{\mathrm{n}}$
Minimum sample size "n" for estimating the population mean $(\mu): \mathrm{n}=\left(\frac{\boldsymbol{z}_{\mathrm{c}} \times \sigma}{\mathrm{E}}\right)^{2}$
Standard Deviation for the Difference of...

Means $\left(\mu_{1}-\mu_{2}\right)$ Testing:
$\bar{\sigma}=\sqrt{\frac{\sigma_{1}^{2}}{\mathrm{n}_{1}}+\frac{\sigma_{2}^{2}}{\mathrm{n}_{2}}}$ use $\mathrm{s}_{1} \& \mathrm{~s}_{2}$ when $\sigma_{1} \& \sigma_{2}$ are unknown

$$
\text { Percentages/Proportions }\left(p_{1}-p_{2}\right) \text { Testing: }
$$

$$
\bar{\sigma}=\sqrt{\frac{\overline{\mathrm{p}_{1}}\left(1-\overline{\mathrm{p}_{1}}\right)}{\mathrm{n}_{1}}+\frac{\overline{\mathrm{p}_{2}}\left(1-\overline{\mathrm{p}_{2}}\right)}{\mathrm{n}_{2}}}
$$

Regression:

$$
\frac{\mathrm{n} \cdot \sum_{i=1}^{n} x_{\mathrm{i}} \cdot y_{\mathrm{i}}-\sum_{\mathrm{i}=1}^{\mathrm{n}} x_{\mathrm{i}} \cdot \sum_{\mathrm{i}=1}^{\mathrm{n}} y_{\mathrm{i}}}{\left.{ }^{2}\right)^{2}-\left(\sum_{i=1}^{n} x_{\mathrm{i}}\right)^{2} \cdot \sqrt{n \cdot \sum_{i=1}^{n}\left(y_{\mathrm{i}}\right)^{2}-\left(\sum_{i=1}^{n} y_{\mathrm{i}}\right)^{2}}}
$$

Least-Squares Line, $\hat{\boldsymbol{y}}=\mathrm{a}+\mathrm{b} \boldsymbol{x}$

$$
\mathrm{b}=\frac{\mathrm{n} \cdot \sum_{\mathrm{i}=1}^{\mathrm{n}} x_{i} \cdot \boldsymbol{y}_{\mathrm{i}}-\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} x_{\mathrm{i}}\right)\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \boldsymbol{y}_{\mathrm{i}}\right)}{\mathrm{n} \cdot \sum_{\mathrm{i}=1}^{\mathrm{n}} \boldsymbol{x}_{\mathrm{i}}{ }^{2}-\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \boldsymbol{x}_{\mathrm{i}}\right)^{2}} \text { and } \mathrm{a}=\overline{\boldsymbol{y}}-\mathrm{b} \overline{\boldsymbol{x}}
$$

