I. For a population, its mean " μ " is approximated by " \bar{x} " (i.e., the mean of a random sample).
II. The "margin of error," is $E=|\bar{x}-\mu|$; i.e., how far " $\overline{\boldsymbol{x}}$ " is from the true (population) mean " μ "
III. The "confidence interval" for \bar{x} in a distribution of sample means is given by $\overline{\boldsymbol{x}}-\mathrm{E}<\mu<\overline{\boldsymbol{x}}+\mathrm{E}$. The confidence level is expressed by a percent, $\mathrm{P}(\overline{\boldsymbol{x}}-\mathrm{E}<\mu<\overline{\boldsymbol{x}}+\mathrm{E})=\mathrm{c} \% \ldots$

IV. Using the standard normal distribution:

$$
\text { and } \quad \boldsymbol{z}=(\overline{\boldsymbol{x}}-\mu \overline{\boldsymbol{x}}) \div \sigma_{\bar{x}}
$$

find the \boldsymbol{z}-score, " z_{c} " such that...

$$
\mathrm{P}\left(-\boldsymbol{z}_{\mathrm{c}}<\boldsymbol{z}<\boldsymbol{z}_{\mathrm{c}}\right) \approx \mathrm{c} \%
$$

"E" can be determined as follows,
solve $\quad \boldsymbol{z}_{\mathrm{c}}=\left(\mu+\mathrm{E}-\mu_{\bar{x}}\right) \div \sigma_{\bar{x}}$
multiply by " $\sigma_{\bar{x}}$ ", to obtain

$$
\boldsymbol{z}_{\mathrm{c}} \times \sigma_{\bar{x}}=\mu+\mathrm{E}-\mu_{\bar{x}}
$$

then use $\quad \sigma_{\bar{x}}=\sigma \div \sqrt{\mathrm{n}}$ \& $\mu_{\bar{x}}=\mu$
to get $\quad \boldsymbol{z}_{\mathrm{c}} \times \sigma \div \sqrt{\mathrm{n}}=\mu+\mathrm{E}-\mu$
VOILA! $\boldsymbol{z}_{\mathrm{c}} \times \sigma \div \sqrt{\mathrm{n}}=\mathrm{E}$ p. 363
" z_{c} " is referred to as the "critical value"

V. The confidence interval/level \& margin of error model is statistically valid provided:

(1) the original/raw " x " data is a normal distribution

OR
(2) the original/raw " x " data set's distribution is not significantly skewed (i.e., its graph is basically bell-shaped), and that the sampling " \bar{x} " data is a random sample whose size is $n \geq 30$
VI. Examples (pp.370-372): \#12,14a, 18,22

HW: pp.369-373 / \#1,3,5,11,13a,15a\&d,19,21,23
Read pp.374-381 (section 7.2)

