I. Discrete vs Continuous Distributions:

- 1. A binomial distribution is
- 2. A normal distribution is
- 3. A binomial distribution may be "approximated" by the normal distribution provided that the number of trials "n" is sufficiently large.
- 4. Example 14 (pp.333-334), for Figure 6-34 find...

$$P(0) \approx 0.$$
 $P(2) \approx 0.$

$$P(2) \approx 0.$$

$$P(1) \approx 0.$$
______ $P(3) \approx 0.$ _____

$$P(3) \approx 0.$$

where
$$P(r) = {}_{n}C_{r} \times p^{r} \times (1-p)^{n-r}$$

for Figure 6-35, why does the graph appear to stop after r = 7 (when n = 10)?

find
$$P(8) \approx {}_{10}C_8 \times (0.25)^8 \times (0.75)^2 \approx 0.$$

and $P(9) \approx P(10) \approx$ similar for graph 6-36 & 37

5. "n" size requirement is, $n > 5 \div p \& n > 5 \div (1-p)$ (reliable when "p" is **not** close to **0** or **1**)

II. Normal Distribution for Discrete Variables:

1. Continuous variable...

P(a < x < b) = probability that a random "x" value is between "a" and "b"

$$P(a) = _{and} P(b) = _{and}$$

2. Discrete variable (using "continuity corrections" / p.335)...

$$P(a) = P(a-0.5 < x < a+0.5)$$

$$P(b) = P(b-0.5 < x < b+0.5)$$

P(a-0.5 < x < b+0.5) = probability that a random "x" value is between "a" and "b"

III. Examples (pp.339-342): #4,6,10,12-P(35)

HW: pp.339-342 / #1,3,5,9,11,13abc,15