I. Equation Forms of a Line: Summary (p.158)

1. $y=\mathrm{m} x+\mathrm{b}$
2. $\mathrm{A} \boldsymbol{x}+\mathrm{B} \boldsymbol{y}=\mathrm{C}$
3. $y=\mathrm{b}$
4. $\boldsymbol{x}=\mathrm{a}$
5. $\boldsymbol{y}-\boldsymbol{y}_{1}=\mathrm{m}\left(\boldsymbol{x}-\boldsymbol{x}_{1}\right)$
slope-intercept form
standard form
horizontal line form
vertical line form
point-slope form
$\mathrm{P}_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right)$ is any point on the line
II. Examples (p.163): Exercises \#14,16
III. Parallel \& Perpendicular Lines (pp.160-161):
6. Parallel lines have the same slope...

$$
\text { i.e., } \quad \mathrm{m}_{1}=\mathrm{m}_{2}
$$

2. Perpendicular lines have slopes which are negative reciprocals of each other...
i.e., $\quad \mathrm{m}_{1}=-1 / \mathrm{m}_{2} \quad\left(\right.$ or $\left.\mathrm{m}_{1} \cdot \mathrm{~m}_{2}=-1\right)$
also, can be a horizontal \& vertical line

IV. Example (p.163): Exercise \#34,46

HW: pp.163-164 / Exercises \#3,9,13,19,29,35,45, 47,49,53

Exam I: Chapters $\mathbf{1} \& 2$ covered

approx. 10-12 problems...
Order of operations, exponents \& scientific notation
Solve an equation (one variable)
\% application problems
Graph an equation/function
Function notation, arithmetic (\pm, \times or \div), Domain \& Range
Slope (m) formula
Find \boldsymbol{x} - and \boldsymbol{y}-intercepts of a linear function
Find equation of a line: $\boldsymbol{y}=\mathrm{m} \boldsymbol{x}+\mathrm{b}$ or $\mathrm{A} \boldsymbol{x}+\mathrm{B} \boldsymbol{y}=\mathrm{C}$
Parallel $\left(m_{1}=m_{2}\right)$ vs Perpendicular $\left(m_{1}=-1 / m_{2}\right)$
Calculator, pencil, eraser, straight-edge needed!

