I. Dividing Radicals (p.563):

\[\frac{n\sqrt{a}}{n\sqrt{b}} = \sqrt[n]{\frac{a}{b}}\]

II. Examples (p.569): Problems #8, 12, 14, 16

III. Rationalize the denominator, Part 1 (p.565):

A square root which is not a “perfect” square root is an irrational number...

\[\frac{a}{\sqrt{b}}\]

has an irrational denominator, which may be “rationalized” as follows...

\[
\frac{a}{\sqrt{b}} \cdot \frac{\sqrt{b}}{\sqrt{b}} = \frac{a\sqrt{b}}{b}
\]

Similarly,

\[
\frac{a}{\sqrt[3]{b}} \cdot \frac{\sqrt[3]{b}}{\sqrt[3]{b}} \cdot \frac{\sqrt[3]{b}}{\sqrt[3]{b}} = \frac{a\sqrt[3]{b^2}}{b}\text{ (rationalize cube root)}
\]
VI. Examples (p.569): Problems #20,28,30,32,42,48

V. Rationalize the denominator, Part 2 (p.566):
 A. Conjugate of “a + b” is “a – b”
 B. \((\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})\) = \[
 \begin{array}{c}
 \text{F} \\
 \text{O} \\
 \text{I} \\
 \text{L}
 \end{array}

 =
 \]
 i.e., the product of conjugates is a \[\sqrt{\text{_________}}\]

VI. Examples (p.569): Problems #54,58,60

HW: pp.569-572 / Problems #1-57(odd),65-93(odd)
Read pp.573-575 (section 8.6)