III. More Examples (p.325): Exercises #2-52 (even)

IV. Scientific Notation (p.320):
numbers expressed in the form “\(a \times 10^n\)” where \(1 \leq a < 10\) and “\(n\)” is an integer...
shorthand for very large/small numbers that contain a large number of zeros (often the case w/approximate numbers)...

\[\text{e.g.,} \quad 4.6 \times 10^9 \text{ yrs} \quad \text{age of the Earth}\]
\[2.99 \times 10^8 \text{ m/sec} \quad \text{speed of light}\]
\[2.78 \times 10^{-10} \text{ m} \quad \text{H}_2\text{O molecule size}\]
V. Converting (between standard & scientific notation)
move the decimal point “n” places...
 n > 0 for large numbers
 n < 0 for small numbers

VI. Examples (p.326): Exercises #54-62 (even)

HW: p.325 / Exercises #1-51 (odd)
 Read pp.330-337 (section 4.3)
 pp.326-328 / Exercises #53-87 (odd)
I. Polynomial (p.330):
 an algebraic expression in which all terms are of the form, “\(a x^n \)”

 e.g., \(2x^3 \) \quad \text{one term polynomial}
 \(-x^2 + 5\) \quad \text{two “” “”}
 \(3x^4 - 0.2x + \frac{1}{2}\) \quad \text{three “” “”}

 etc.

II. Examples (pp.337-338): Exercises #2,4,8,14,18

HW: pp.337-342 / Exercises #1-19(odd)