I. Simplifying Properties (*continued*, pp.323-325):

 4. \(b^m \div b^n = b^{m-n} \)

 5. \((a \div b)^n = a^n \div b^n \)

 6. \(b^0 = 1 \)

 7. \(b^{-n} = 1/b^n \)

II. Examples (pp.330-331): Problems #2-78(even)

III. Scientific Notation Revisited (p.327):

 numbers expressed in the form “\(a \times 10^n \)” where \(1 \leq a < 10 \) and “\(n \)” is an integer...

 shorthand for very large/small numbers that contain a large number of zeros (often the case w/approximate numbers)...

 e.g.,

 4.6 \times 10^9 \text{ yrs} \quad \text{age of the Earth}

 2.99 \times 10^8 \text{ m/sec} \quad \text{speed of light}

 2.78 \times 10^{-10} \text{ m} \quad \text{H}_2\text{O molecule size}
IV. Converting (between standard* & scientific notation) move the decimal point “n” places...
 n > 0 for large numbers
 n < 0 for small numbers

Note: * the textbook refers to standard form as “expanded” form.

V. Examples (pp.331-333): Problems #82-108(even)

HW: pp.330-333 / Exercises #1-29(odd), 33-73(odd), 81-107(odd)

Read pp.335-340 (section 5.3)